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Abstract

The application of uncertainty analysis to curve and surface fits
obtained by the method of Least Squares is described. The
primary obstacle to the routine implementation of the uncertainty
analysis procedure: the derivation of the sensitivity derivatives, has
been removed. Analytic expressions for the derivatives applicable
to fits of arbitrary order have been derived, and a step-by-step

~ procedure for their incorporation within a computer program
provided. A review of the techniques for the construction of curve
and surface fits of arbitrary order is included. The use of
uncertainty analysis as an aid to the assessment of the suitability of
a particular fit is demonstrated by the application of these
procedures to a series of examples employing a generic data set
typical of experimentally derived data. Some results include:
quantification of the penalty for using a higher-order fit when it is
not appropriate, and the fact that reduction of uncertainty in the
data to be fitted is more effective at reducing the uncertainty in fit
coefficients and fitted values than simply increasing the amount of
data used to construct the fit. A computer program implementing
these procedures is available from the authors.

Administrative Information

This work was sponsored by the Office of Naval Research (Code 333) under Contract
N0001497WX30267 and Program Element 601153N.

Introduction

The use of the method of Least Squares for the construction of curve fits as models for experimental
behavior is, for better or worse, a universal practice. At an early stage of training in engineering
disciplines and in the sciences, one is introduced to the procedure and quickly learns to produce linear
and quadratic fits. Less well known is the general implementation of the procedure for polynomial fits
of arbitrary order and the ability to replace the usual set of basis functions with alternatives which may
be more appropriate. A useful example of the latter approach is the use of products of polynomials of
arbitrary order for the construction of a surface fit to a function of two independent variables. The
indiscriminate or incorrect use of the method can lead to faulty conclusions when modeling behavior,
and because the technique is so popular and straightforward to apply, the potential for misuse is large.

Measures to assess the goodness of the fit exist and serve as a check on the suitability of a particular
model, but these measures can be insensitive and, considered in isolation, misleading. One must also
consider the degree to which measurement uncertainty existing in the data to be fitted will propagate into
the fit coefficients and in fitted values obtained from the use of the model when judging the



appropriateness of a particular fit. This paper discusses the application of uncertainty analysis to curve

and surface fits of arbitrary order determined using the method of Least Squares. The general procedure

requires the calculation of various partial derivatives, termed sensitivity derivatives, which can be quite

formidable if attempted in a brute-force fashion. Instead, analytic expressions for the computation of
these derivatives when the method is applied to curve and surface fits have been found; these formulas

may be implemented within a computer program, thereby making the use of uncertainty analysis an
integral part of the procedure for the construction and assessment of an arbitrary order fit. The manner

in which these derivatives are determined is linked to the procedure for calculating arbitrary order fits;

for this reason, the general method for constructing curve and surface fits will be reviewed.

The calculation of uncertainty associated with coefficients for and with fitted values from a Least
Squares fit is attributed to Coleman and Steele and may be found in the new edition of their text'. As of
this writing, the text is scheduled to be released in February 1999. Because the method does not appear
in their previous text and has been available only through private courses offered in the past few years,
the uncertainty analysis procedure along with general instructions for its use have been reproduced here
for convenience. Direct calculation of the sensitivity derivatives for the linear and quadratic curve fit
cases is provided to allow an independent check on the implementation of the general method. A step-
by-step outline for incorporating the general procedure within a computer program is included. All of
the techniques described here have been executed in a FORTRAN computer program which is available
upon request from the authors. ‘

Finally, the use of uncertainty analysis as an aid to the assessment of the suitability of a particular fit is
demonstrated by a series of simple examples employing a generic data set which is typical of
experimentally derived data. The results illustrate the general use of the method, quantify certain
previously held suspicions and introduce some surprises. The next section begins with a description of
the general procedure for the derivation of an arbitrary order fit.

Computation of an Arbitrary Order Least Squares Curve Fit

Given n pairs of experimental data (x,. , y,.) for i=1,2,...,n, one can fit an mth order polynomial to the
data of the form:

1

m
2 m k
y=c+ox+ex" +. 40, X =ch+1x , (1)
k=0

where the choice of m is constrained such that n>m+1. The values of the unknown coefficients are
determined by the criterion used to choose the best fit to the data. The Least Squares criterion chooses

the coefficients of the fit such that the sum of the squares of the distances of the measured data (x,. , y,.)
from the fitted data (x,. , )7,.) is a minimum. In other words, we seek to minimize the quantity

n 2

n 2
-30-5) =3 - .
i=1

i=1




Because the (x,. , y,.) are known, g will depend only upon the coefficients ¢, for k=1,2,...,m+1. To
minimize g, we compute partial derivatives with respect to each coefficient and set each resulting
equation equal to zero to obtain

H

o
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i 29
de,
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Rearranging yields the following set of m+1 simultaneous equations:

cl”+czzxi+Cszxi2+"-+cm+1zxim =Zy,»
COX G DX+ DX o+ DX = DXy,
c,fo +czz:x,.3 +c3fo -t-...+c,,,+lv2x,.”'+2 =Zx,.2y, . )]

m m+1 m+2 2m m
szxf +szxl~ +Cszx.- +---+cm+1zxi “in.)’i

These equations can be easily represented in matrix form and are known as the normal equations.

ino inl in"’_ o) —Zx,.oy,.ﬁ
inl Zx? inma-l c Zx,.]y,. )

m m+l 2m m
zxi in in JLCmn _fo Vi

Here we have a (m+1)x(m+1) matrix of known quantities multiplying an unknown (m+1)x1
coefficient vector to obtain a known (m+1) x1 right-hand-side vector. There are a variety of methods
available for the solution of a simultaneous system of linear equations. Note that the (m+1)x(m+1)
matrix above is symmetric and positive-definite which implies that very efficient and fast simultaneous

- equation solvers may be employed for the solution. Alternatively, if the matrix is nearly singular, then
singular value decomposition techniques may be applied. These procedures are described in Numerical
Recipes”.

To build the above set of equations within a computer code, one begins by forming the nx(m+1)
matrix C and its (m+1) x n transpose C" :




0 o 0
Xpo X o X Xp X o X,

X
Sk (6)

1 1
x' x
1 2
and C'=| .

m m
'x1 x2 .o x

Then, the normal equations defined in Egs. 5 can be easily developed using matrix multiplication as
follows:

C'C e=C"y, ' ()

and the known matrices CTC and C"y can be passed to a simultaneous equations solver to solve for the
unknown coefficient vector c.

Following Holman *, quantities which describe the degree of goodness of the fit are the standard error of
the fitted values given by

O.y,x = -—(m+l)Z( ) jl

2 172 ° (8)
2 m
o,, = —CX, — ... —CpuX;
V.x I’l (m+1)Z( 37 m+17vi ) }
and the correlation coefficient, R, which is computed from
2 12 12
Oy x : L. Tl \2

R=|1-— where the standard deviationof y, o, = 1 ( V= y) . €)

¥y 1=l

Note that some texts omit the coefficients in the numerator and denominator of the expression

that defines R. The coefficient of determination, used by some texts, is also used as a measure of the
goodness of the fit and is simply the square of the correlation coefficient. This quantity is usually

defined such that the coefficients in the numerator and denominator are omitted.

Uncertainty Method
Given n pairs of experimental data (x,. , y,.>, along with associated bias errors, (Bx),- and (By)., and

precision errors, (Px),- and (Py). , the method due to Coleman and Steele ' determines how these errors

propagate through the governing equations to produce uncertainty in the resulting fit coefficients and in
future values predicted from the fit. Consider the simple case of a linear fit

y=c +CX . (10)
1 2




The equations for the coefficients are the solutions to Egs. 5 for the case m =1 and are given by

_zxzzy, Saday  ayEn-Yady

¢ = =Ll and ¢, =—— =l (11)

St -(3n) St -(5)

i=1 i=1

To compute uncertainty in fit coefficients, the method treats equations such as Eqgs. 11 (or Egs. 21
below) as propagation equations and then applies standard techniques for the propagation of uncertainty.
These equations are presented in the next section. Then, combining Eqs. 10 and 11 one can track the
uncertainty propagated into future fitted values which will be described in the following section.

-Uncertainty in Curve Fit Coefficients

Denote the bias uncertainty propagated into the kth coefficient c, as (BC) , > this quantity may be
computed from

=32y 5(22] () o8 5[22)(2) s,

i=1 i

5 555 w)ie) 8 £ Seate),

i=1  j=i+l i=l  j=i+]

(12)

where we have assumed correlated biases among the x;, among the y, and also between x, and y,. If
any of these biases among the raw data values can be shown to be uncorrelated, then the corresponding
terms in Eq. 12 should be excluded.

c

The precision uncertainty propagated into the coefficient c, , (P ) , » is obtained from a similar equation;

however, since precision errors are considered to be random, all precision errors among the raw data
values are uncorrelated.

(5e ) v w(de)
(2); =Z( 5;) (ry+3 5;] (8] - (13)

i=1

To arrive at an overall uncertainty, (U C) . » for the coefficient c,, one must combine the bias uncertainty
computed in Eq. 12 with the precision uncertainty obtained in Eq. 13. There are two generally accepted
methods for computing (U c)k. The first method is denoted as the root-sum-square (RSS) method and
the total uncertainty is given by ’

(v.), =(8.). +(2); - (14)

This uncertainty is considered to be a 95% coverage estimate when B and P are 95% confidence values.



The second method is to combine bias and precision uncertainties by simply adding them (ADD
method):

(v.), =(8.),+(~), (15)

This method produces a total uncertainty which provides about 99% coverage when B and P are 95%
confidence values and when neither B nor P is negligible relative to the other. However, when either B
or P is negligible relative to the other, clearly the total uncertainty cannot be better than a 95%
confidence estimate. To carry out these computations, we need expressions for the partial derivatives
(sensitivity derivatives) that appear in Egs. 12 and 13. For the simple case of a linear fit, the derivatives
are applied to Egs. 11. We make use of the formula for the derivative of a quotient, and for the linear

case, we have:

d o num, O den
de, oy, T 5%, 1 | Snum, 3 den 16)
- P __‘c
dx, den’ den| Ox, ox |’
P  num, Jden
de, en 2y, 5 i1 [ dnumy Jden an
Sy, den’ " den| 0Jy, K 3y, |’
0”numl & num 2
EOREDRIESHIS DRI YR (18)
J num, J num,
Gx =ny,- 2.y, and 7, =ny, - )% - (19)
ad ad
é’;,.n = 2nx, ~ZZ x;, and o";l.n =0. (20)

For the case of a quadratic fit, the equations for the coefficients are the solutions to Eqgs. 5 for the case
m =2 and are given by:

_Zn[Se T () | ZAE B - T ] Dl [ B - B B
1 PEA [Z %) - Zx ) ]+fo[2x,2x,2——anf]+fo[anf—(in)z

X[y >y |+ 2y [ Tn Ll -ny x|+ ol [ xy - 2%, 2]
2 zx,.[zx,.zx, zx)] YTt -ny [+ Tt nE e ()

fo[zxfzxfyi —foZy,.]+Zx,.3[Zx,.Zy, ——an,.y,]+in2y,. anf _(foz)zl
DRI RSN DRI

1)

i fo[zxfzxis _(inz)2




Applying derivatives to these expressions is a tedious task. After much algebra, we find:

74 2
oS

+2xi2{3xi22xiyi +4xi32yi -2x:yizxf2 _4xizxf2y'] (22)
+le,3[y,.2xi2 +2x,Zx,.y,- —6szzyi +2xiyizxi +in2yi]
+Zx,f‘[2x,-2y,- _inyi _yizxi]

0”;3‘:’1 - Zx,-z[‘ xizzxf]+zxf[xizzxi +x, 2] ‘fo]’Lfo[zx"z —x,in] @)

a;lfz = Y[, Lty - 4x) 2 |+ 2wy ox + 367 Ly, -,
+Z x; [2xi Zy,. ~2nx,y, ] + Zx,“ [ny,. - Zy,.]+ Zx,.y, [4mc,.3 —4x, fo] (24)
+Z xfy,.[fo —3nx,.2]
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+in3[2le.2 —6nxi2]+2x,f’ [an, —22-75,']

Jdden
ﬁyi

(26)

(28)

=0 ' (29)

These equations are then substituted into Eqs. 16 and 17 to find the needed derivatives. Summarizing,
one computes the bias and precision uncertainty propagated into the fit coefficients from Egs. 12 and 13
making use of Egs. 11 and 16-20 for the m=1 case or of Egs. 16-17 and 21-29 for the m =2 case. The
total uncertainty in fit coefficients is then determined from Eqgs. 14 or 15.



Uncertainty in Predicted Values from Curve Fit
After calculating the coefficients of the fit equation, one can supply a new value X in order to compute a
new value Y using:

Y (X)=c +c, X +c, X +...+¢c,,, X" for X chosen such that x, <X <x
1 2 3 m+1 max | (30)

min

We wish to consider the uncertainty that will propagate into this fitted Y(X). Different equations are
used depending upon whether or not there is uncertainty associated with X. The most general case is the
one in which there is uncertainty associated with X. The bias uncertainty that propagates into the fitted
Y(X) for this case may be computed from

5 LA TP 5, LA TS B o{ s E2e YT}

i=1 i=1 j=i+l

n

+2"Zf§"jl( Mayjj( B.),(8,), +2§Z(0”y,){ J(By)i () . @31)

i=1 j=i+ i=1 j=i+l

2 o202 (202
+(5X) BX+2,Z=,: 2X)\Ox, BX(B")f+2§ x)\ay, BX(B.v),-

where we have assumed the most general case of correlated biases among the x; (and X), among the y,
(and X) and also between x, and y,. If, as described above, any of these biases can be shown to be
uncorrelated then, of course, the appropriate terms in Eq. 31 should be excluded.

The precision uncertainty that propagates into the fitted Y(X) is obtained from

n (oYY, v (oYY v (oYY
Py2 =§(_ﬁ—;j (PX), +Z(~0,7) (Py)’_ +(5—X:) Py . 32)

i=l

Y JY oY

Now, to evaluate these expressions, we need to determine the partial derivatives: , and .
ox;, 2y, X

I

One applies the derivatives to Eq. 30 which, for the linear case, may be written as

nzxy, S, Zy, szzy, S,

Y(X)_ i-1 -1 X+ i-1 i=1 ) (33)

_ ngxf—(;xfj 10 ”;x"z“(;x')




The needed derivatives are found to be:

0”Y_ﬁc1 +0”c2 X+0”c3 ¥, +ﬁc,,,+1 e (34)
dx, Ox, Ox, ox, T 9x, ’
ﬁy—‘ﬁcl +502X+0"C3 X4 +5cm+l X™ _and 35
ﬁyr’_é)yi ay; 2y, 9y, & G2
Y 2 m-1
}—?=c2+2c3X+3c4X +..+me, X", | (36)
dc, ac, . . .
where 2 and g are as calculated previously for the linear or quadratic cases above. Note that
X; Yi
oY Y oY

5z By and % are functions of X and must be recomputed for each new value of X.

Now, given a value X, we can compute a value ¥ from Eq. 30 and an associated B, and P, from Egs. 31
and 32. From the latter two quantities we can determine a total uncertainty U, from Egs. 14 or 15. This
process should be repeated for X, which vary throughout the range x,,, <X; <x,, ., and a series of

Y(X); and (U . )j will result. Then, the uncertainty in fitted ¥(X); values should be plotted along with

the fitted curve as follows. Plot the original (x,. , yi) data values along with the fitted curve

X" obtained from the new (X f ,)f,) data pairs. Then plot above

el <>

and below this fitted curve the two additional curves: ¥(X), +(Uy ), and ¥(X), (U, ), . The latter two

curves then give an indication of the total uncertainty in fitted Y(X), values across the entire range

Y(X)j =, +c2Xj+c3Xf +...+cC

Xmin S X S X -

Summary of Fitting Procedure
To summarize, then, one can compute the total uncertainty in the fit coefficients as well as in the fitted
Y, values by performing the following steps:

1. From the (xi , y,.) data pairs, compute the fit coefficients. Examples for the linear and
quadratic cases are given in Egs. 11 and 21, respectively.

2. From the (x,. , y,.) data pairs, compute the sensitivity derivatives. Examples for the
linear and quadratic cases are given in Eqs. 16-20 and Eqgs. 16-17, 22-29, respectively.

3. Compute uncertainty in fit coefficients (Bc) and (Pc)k from Egs. 12 and 13,

k
respectively.




10.

1.

Form the total uncertainty (Uc) , from Egs. 14 or 15.

Supply a value X, in the range x,;, <X, <x,,,, and for this X, compute Y(X) )

Y JY oY
from Eq. 30 and ox By and X from Eqgs. 34-36.

i ?

For this X, estimate By and Py . .

For this X, compute B, and 7 from Egs. 31 and 32, respectively.
For this X, form (Uy)j from Eqgs. 14 or 15.
Repeat steps 5 to 8 for X; throughout the range (x,. )mm <X, < (x,. )mx .

Plot the original (xi , y,.) data values along with the fitted curve
Y(X)j =c +¢ X, +c3Xf +...+c,, X obtained from the new (Xj ,Y,) data pairs
generated in step 9.

Then plot above and below, respectively, the curve generated in step 12, the two
additional curves: Y(X); +(Uy)j and Y(X), —-(Uy)j. The latter two curves then
give an indication of the total uncertainty in fitted Y(X ), values across the entire

range x.;, S X; X,

10




Calculation of Sensitivity Derivatives

As can be seen from the previous sections, the method is straightforward to apply; the primary difficulty
is the derivation of the sensitivity derivatives for a fit of arbitrary order, and we will show how this may
be accomplished in this section. One proceeds by first developing analytic expressions for the
coefficients. This can be done by employing Cramer’s rule for the solution of the simultaneous
equations in Egs.5. Cramer’s rule finds the solution for each coefficient in ¢ as a quotient of
determinants; the denominator is simply the determinant of the C*C matrix for all coefficients, and the
numerator is the determinant of the matrix formed by replacing the K column of the CTC matrix with
C"y for coefficient ¢,. Therefore, for a nonsingular C'C matrix we can write:

Si Tal o Ter Se S Ty
inlyi lez in,m inl Zx? inlyi

m m+l 2m : m m+1 m
inyi in in Zx,- in inyz

G = cm+ = (37)
T o - VR YRy
Yo Xxr o S Yol Xa o S
DDA PREADI AN
e _ . . .. dc, de,
The sensitivity derivatives that are needed for uncertainty calculations are the quantities: Fx. and g
X; Yi
fori=12,...,nand k=1,2,...,m+1. As an example of these calculations, consider the computation
ac,
of .
ox;
PIESRED I S A 3¢
Xxlo 2wy o 2
Se, O |2 o Xy o 2"

y
Fx,  Fx, 1¥xt Yxl o Dy
Yxl Y e : (38)

m m+] 2m
in in in

O num Jdden
den — num {

ox; ox; 1

J num Jden
- den? " den

-c
ox; b ox,
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The computation reduces to the determination of derivatives of determinants in the numerator and the
denominator. To see how this may be accomplished for any values of m and », we will first consider the
simple case of a 3x 3 determinant.

a, ayp 4dp ta +a.d +
o 0 an adl= o 118022033 T 05,0503 a31a12a23:|
2 Gy Qx| =
ax, O x| — Q305013 — A3,0530, — Q330,50
ay 4y Ay
day, éa,, day,
+—a,,a,; + 03,4, T ApaA
ox, 28T 5y 129, dx, 1293
—é’a”aa _5a32a 5”33aa
2 3 2
é)xi 2213 Oﬂx’ 23711 ﬁ : 112
ca da,, da,
+a a a a
33T 3
11 5)6‘ Iaxi 13 15[ 23
+
da, da,, Jday,
as api —dy ay —4ds; ap
ox, ax; ox,
das, da 0 a,,
+a,a, ——+a +a..a
oy 29275 2 TG
+
day, da, day,
a.d,, ———4a a
3192 3205 1309
i Ix; dx, ox,
o"an 0”(112 aaB
a, a3 |9 ags| |19y 4 (39)
ox; Ix; ox;
= Oy a,, .|+l 08y a.l+la,, a éaﬁ
= n 4 21
o, ax, 23 a G gy
94, a,, a a Oy a a., a %i
ox, 1 O3 oy, 33 n oy

The evaluation of a derivative of the general case of an (m+1)x(m+1) determinant can be carried out
by computing the sum of m+1 determinants; the k" determinant in the sum is formed by replacing each
element in the A7 column by its derivative with all other columns remaining the same. This is an
important observation because each of the determinants in the sum can be formed efficiently within a

. . .. dce
computer code. For example, if one wished to compute the derivatives 0,,—'- for the case m=2, one
Xi

would form the quantities: -




inoyi inl lez
inlyi lez Zx?
oo o |Xxlv 2w 2
ox, 0% [y Yy X
Zx,‘ Zx,z fo ;
PREADIADIEA
o num Jdden
den X, ‘”"”’?97,." 1 | Pnum O den
[ ox; ~6 ox, jl

; den® " den

where the derivatives of the numerator and denominator would be found from

o e S| [T S| [y e 2
LCENED SR I B3 EE IS 3 H) WD W

i zxilyi Zx? fo fozyi 3xi2 fo fo)’i Zx? 4x,.3

é’d O inl inz leﬂ lxio lez Zx'O lel 2xr‘
den o §0 SOlSe 2 SeliSe T s
e Yxr x| Dx? 32 Sxtl Doxr Yoxl ax?

(40)

@41

. . - dc e
To obtain the entire set of derivatives, 5—1— ,for i=1,2,...,n, one must form the quantities given in
x

i

7
Egs. 40 and 41 for each i for i=1,2,...,n. Similarly, to compute 0,,—0-1-, for the case m=2, one would

i

form the quantities:

Zx?yi inl nyz

: inlyi lez fo

Se, & |2xlv, Xxi dx

2y _é’yi Zx? inl Zx,z
S S 5 ,

S S Sk

2 num Jden
den —num |:

oy, oy, 1

den? " den

Jdnum . dden
2y, “ 2y,

where the derivatives of the numerator and denominator would be found from
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P x,.° inl inz inoyi 0 lez inoyi zx"l 0
il = xi1 Zx’?. Zx? + inlyi O Zx? + inlyi foz O
| Xx x| (Xt 0 2| iy 2 0
x; le.’ > x?
|y Zx,z fo .. (43)
x} Zx,3 Zx,4
oden | Sxb 2 [Xx 0 x| [Xx 2x 0
o Txt SelsZa 0 TasZa Xt 0|=0
Tole Tk x| Xk o0 Xl [Xx? Xxd 0
Here we see that the calculations are simpler requiring the calculation of only one determinant for the
numerator (true, for any order 7) and with the denominator not a function of y;.

.. . _ . dc de
Summarizing, the required sensitivity derivatives, g—" and —a—" for i=1,2,...,n and
X; Yi
k=1,2,...,m+1 consist of two nx(m+1) arrays. A recipe describing one possible implementation of

these calculations within a computer code for any m and » is as follows.

1. For the computations dealing with coefficient ¢,, form a set of m+1 arrays of size
(m+1)x(m+1) and initially fill the arrays with the elements of the C'C matrix. For
coefficient ¢, , replace the j = k™ column of each of these m+1 arrays with C"y.

2. Repeat step 1 for each of the m+1 coefficients storing all data; these arrays will be

used for numerator computations. Repeat step 1, one additional time (m+ 2" time),
where each of the arrays are filled with the elements of the C"C matrix only. This
latter set of arrays will be used for denominator computations. Note that all of this
data can be stored within a four-dimensional array with the following dimensions:
m+1 rows indexed by I (where I is a different index than i which indexes original
data values), m+1 columns indexed by j, m+1 matrices required for derivative
calculations for each coefficient indexed by , and m+2 sets corresponding to m+1
numerator calculations for each coefficient and one denominator calculation (common
to all coefficients) indexed by k. Denoting the four-dimensional array by 4, and

looping over all four indices, we have

cry, =k
4 =\crc,, jrk

Note that the k index can loop to m+2 as required since j cannot equal k for this case.

14




. I oy O
3. Now, for the k" set, replace the j =I" column in the " matrix in the set with ——

. Repeat step 5 for each of the m+2 sets. These sums represent

ox,

of the previous column contents. With loops over 7, / and  this can be accomplished
as follows.

0 I=1

I-2 . l - k
y (I-Dx, "y, otherwise
L 0] I+1<3 L
(I +1-2)x/""7 otherwise

. Repeat step 3 for each of the m+2 sets indexed by k.

. Compute the determinant of each of the m+1 arrays per set. Sum these determinants

and store the sum in a one dimensional array indexed by &.

Jnum

for each of the

i

e . At this point all of the

data in the four-dimensional array formed in step 2 has been used, and we proceed to

m+1 coefficients with the last set corresponding to

J )
the — calculations.

i

. For the k™ set, replace the j=1I" column in the /" matrix in the set of m+1 arrays

oy @ . . i
with v of the previous column contents. One may use the four-dimensional array
Vi

as it exists after step 6; it does not have to be recreated. With loops over I, [ and £
this can be accomplished as follows.

0 otherwise
Alllk = Uk

7

. Repeat step 7 for m+1 sets indexed by k. Do not bother with the m+ 2" set because

the denominator is not a function of y,.

. Compute only the determinant of the /=%" array in the set since the other

determinants in the set will be zero. Store this determinant in a one-dimensional array
indexed by £.
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10. Repeat step 9 for m+1 sets and set the m+ 2" element of the one-dimensional array

™
for each of the m+1 coefficients

equal to zero. These elements represent

Jden

with the last element corresponding to ER =0

. .. dc
11. Using the derivatives computed in steps 6 and 10, compute the derivatives —ﬁ—k and
xi
56’1‘, th . . 3
™ for the k" coefficient using Egs. 40 and 42. Store the results in two two-
Yi
dimensional arrays with dimensions #x (m+1) where the first dimension corresponds
toi=1,2,...,n original data values and the second to k=1,2,...,m+1 coefficients.

12. Finally, repeat steps 1-11 for i =1,2,...,n filling the arrays described in step 11.

To debug the implementation one can independently calculate the derivatives for the cases m=1 and
m=2 by programming within a subroutine the derivative expressions derived above in an earlier
section. Results obtained from this routine can then be compared to the results obtained from the brute-

force subroutine.

Computation of an Arbitrary Order Least Squares Surface Fit

Given triplets of experimental data (x,. R yi,z,.) for i=1,2,...,n, where the data are presumed to be
related by a function of the form z= f(x,y), one can construct a surface fit with a functional form
obtained from the product of two mth order polynomials:

mx my

zZ= [iam xp:”:mzybqﬂ y"]: Zch xPy? where k =¢q (mx +1)+p+l , (44)
p=0 gq=0

p=0¢=0
and there are (m, +1)(m, +1) terms in the sum. Note that for a given amount of data, the choice of m,

and m, is constrained by the condition that #n> (m, +1)(m, +1). When m, =m, =2, we have:

z=¢ +¢,% +ext e y+exy+ c6x2y+c7y2 +egxyt +extyt . 45)

An advantage to this formulation is that one can choose m, and m, to be different values. For example,

if one believes the data to be linear in one independent variable and quadratic in the other, then a surface
could be constructed using m, =1 and m,=2. For even finer control, an implementation of this

method in a computer program could, for a given choice of m, and m,, allow the user to retain or omit
any terms in the desired functional form. This is easy to accomplish and will be described further below.

The values of the unknown coefficients are determined by the Least Squares criterion. Therefore, we
seek to minimize the quantity
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n 2

~ my _ w
q= ( -z ) Z(Z - - 2 ,i S Ckyi - Ck+lxiyi c(mr+l)(m)+l)xr Yi n) . (46)

i=1

Because the (xi, y,.,zi) are known, g will depend only upon the -coefficients ¢, for
k=12,...,(m +1)(m,+1). To minimize g, we compute partial derivatives with respect to each
coefficient and set each resulting equation equal to zero to obtain

&q " m
1%
e =2Z(Z,- =6 m0X Y TG XY e T (mx+l)(my+l)x " )(_ 1)= 0
1 i=1
5q 4 i
e S y -
g - 22 (zi —C mCX T OY TG c(mx+1)(my+1)x yr )( xi) =0
cz i=1
é’q - me  m
il S y —
Je. 22(4 = mCX O XY T T Cy ey X Vi ) (_ J’i) =0 (47)
C i=1
é)q & n
_ . L _ _ AV _
7 =2 (“i = TCX T T Y TG X Y (mx+1)(my+1)x “yi )( xiyi) =0
Crst i=1
5q N\ V mx m
— - 1y mx _ my
=2 ("i - cl - CZXi T T ckyi —ck+1xiyi c(mx+1)(my+l)x yl ) ( x yl ) O

a c(mx+1)(my+l) i=]

Rearranging yields the following set of (m, +1)(m, +1) simultaneous equations:

on +c22x,. +...+ck2y,. +ck+12x,y,. +c(m+,)(my+l)zx gy my Zz
clzxi +clzxi2 +... +Ck inyi +Ck+1zxi2yi +c(m)t~4-])(mv+1)zxmﬂ'1 r= ZX

2 2 X my+l
clzyi + CZinyi +... +ckzyi +Ck+lzxiyi +c(m.x+1)(my+])zx Zyizi
2 2 2 1 1
Clzxiyi +szx,- Yit... +ckzxiyi +ck+lzxi yr‘ +C(mx+1)(my+1)wac+ ;o Zx Yig;

(48)

Clzxmx my +szxrnx+1 my+ +ck2xnxx my+1 +Ck+1zxmx+l my+]

2mx 2my _ Z mx my
+ c(mx+1)(my+1) Z X; X;

The normal equations represented in matrix form are:
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0.0
> xy]
1.0
Doxly!

DXy
z xily 1’1

mx . my
_in Vi

2y
P

Z xil y il
2xiy

.

mx+l _ my

in Yi

2 Xy
Dy

DXy
PER

mx | my+1
in Yi

inlyil Zx

21
in Yi

inlyiz
D.xlyt

mx+1_ my+1 2
Zx,- Vi in

ck+1

_C(mx+1)(my+1) |

mx+1_ my
in Yi

L mx _ my+l
in Vi *
mx+1_ my+l
in Yi

mx _ my

i Vi

mx _ 2my

Yi

r 0.0
inyizi

1,0
inJ’iZf

0.1
in.yizi

1.1
inyizi

mx _ my
_in Vit Zi ]

(49)

Here we have a (m, +1)(m, +1) x (m, + 1)(m, +1) matrix of known quantities multiplying an unknown
(m, +1)(m, +1)x1 coefficient vector to obtain a known (m, +1)(m, +1) x 1 right-hand-side vector. To
build the above set of equations within a computer code, one begins by forming the »x (m, +1)(m, +1)

matrix C and its (m, +1)(m, +1) xn transpose C" :

r. 0.0
X W
0.0
XV,

0.0

anyn
0.0
Xy
1.0
XN
T _ 0.1
C =] x )

11
XN

mx _ my
Lxl N

Then, the normal equations defined in Egs. 49 can be easily developed using matrix multiplication as

follows:

1.0
SIP 4!

1.0
X,

1.0

xnyn
0.0
X))

1.0
X2 s
0.1
X, s
1.1
X2 s

mx . my
Xy Vs

11
X0

1.1
X3 ¥,

0.1
X0
0.1
X2 V2
0.1 1.1
xﬂyn xnyn
0,0 1
xnyn
1.0
xnyn
0.1
XV
1.1
xnyn

mx _ my

xnyn_

Xy Va

mx _ my

XN

mx _ my

and

mx . my

xn yn
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C"C ¢=C"z, (51)

and the known matrices C™C and C"z can be passed to a simultaneous equations solver to solve for the
unknown coefficient vector ¢. Note that when forming the C matrix that columns are formed by varying
the first superscript from 0 to m,, then repeating this pattern incrementing values of the second
superscript from O to m,. If one desires to omit one or more terms from the fit equation, the
corresponding columns of the C matrix and the corresponding rows of the C" matrix are omitted prior to
forming the C"C and C"z matrices and the number of coefficients solved for is reduced accordingly.

The quantities which describe the goodness of the fit in Eqs 8 and 9 are for this case:

n

- : 512
o - $(e,-:) }

n- (m, +l)(m +1) 5

172
1 n
— — . - — . mx _ my
O-y,x - Ln _ (mx + 1)(my + 1) ,Zl:(Zi 9 -c2xi TG ck+1xiyi c(rnx+l)(m)+])x Yi ) j|
and the correlation coefficient, R, which is computed from
o’ 172 | & 12
R= |i1 _ Ty } where the standard deviation of z, o, = |:——IZ(Z ——z) j| . (53)
F4 n I=

Uncertainty in Surface Fit Coefficients
The application of the uncertainty method requires » triplets of experimental data (x,. Vis z,.) , along with
associated bias errors, (Bx),> (By). and (Bz),-’ and precision errors, (Px)',, (Py). and (Pz),-' The bias

uncertainty propagated into the kth coefficient ¢, , denoted by (BC) , » 1s computed from:

NP n(e Y v e )
(0t =3(22) (322 (o) 5 22

i=] i=1 i

a8 £ 22265 £(52)(5)mle)
[a

=1 =i+l Jj i=l  j=i+l

; (54)

+2g 'Z‘ e || 24 (By)i(By)j+2’,l__l i

NG Y; a}’j)

n-l L J n-1 n A o
S 32 (22)(a)(a), 28 5(22)( 22 (5 (2),

i=1  jeitl § j i=l =i+l
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where we have assumed correlated biases among all combinations of x;, y; and z;. If any of these
biases among the raw data values can be shown to be uncorrelated, then the corresponding terms in
Eq. 54 should be excluded.

The precision uncertainty propagated into the coefficient ¢, (P )k , is obtained from a similar equation;

[+
however, since precision errors are considered to be random, all precision errors among the raw data
values are uncorrelated.

(-3 28] (e (2 5% ey 5

i=1 i=1 i=1

The total uncertainty, (U C)k , for the coefficient ¢, is then computed using either of the formulas given

in Egs. 14 or 15.
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Uncertainty in Predicted Values from Surface Fit

After calculating the coefficients of the surface fit equatlon one can supply new values X and Y in order
to compute a new value Z using:

Z(X.N)=c,+c, X +...+¢, YV +c, XY +... +c(,,,x+l)(”,),+1)X””‘Y’”-" (56)
for X and Y chosen such that x_, <X<x_, and y_ <Y<y .

The most general equation to define the bias uncertainty that will propagate into this fitted Z(X)Y) is
found to be:

B =322 (5[ 22) () +5(22) (a

i=1

03363 COTDRS Ml E LY
e (G [CAEARD | o ES AN )
85 (22)(22) ) (00,253 (22) (22 00, )
{35) oe(55) =

550 ) 2555 (5 o)

i=1 i=

{555 5. 02 25{57)( 55 0

i=

(5755 ) 2[5 (52 m ) -

i=1

where we have again assumed the most general case of all combinations of correlated biases between X
and Y, and the x,, y, and z,. If any of these biases can be shown to be uncorrelated then the appropriate
terms in Eq. 57 should be excluded.

The precision uncertainty that propagates into the fitted Z(X ¥) is obtained from
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2522 0y 322 () -5(22)

i=1 i=1 i=1 i
EVAY EVAR Y
+[_] p;+(__j p?
oX oY
57 3Z 8z

To evaluate these expressions, we need to determine the partial derivatives: EPRlr and g along
X Vi Z;

i i

oz A
with I and a7 The derivatives are applied to Eq. 56 and are found to be:

oz 94 + o6 X+.. +——~—ﬁc" +————ac’“1 XY+...+———5€("L'+’)(""'+I) xXmym™

dx, Ox, 0x, " Ox, ax, ax,
my ; (39)
‘ mx  m) Of')ck
=ZZ——X"}”’ , where k =q(mx +1)+p+1
=0 g=0 Jx;
h simil ons £ 2z dﬁZ F oz do"Z L
with similar expres an . For an , We :
similar expressions for 2> oz, X Sy Wehave
&Z mx my 52 mx my )
ZL SN pe, X©' Yiand T2 =YY qe, X7 Y, where k=g (m, +1)+p+1  (60)
oxX p=1g=0 oY p=0 g=1
Y 2dY oY
Note that , and are functions of X and ¥ and must be recomputed for each new value of
dx, Oy, X
XorY.
. L . e o dc, de,
Computation of the expressions in Egs. 54-55 and 57-59 require the sensitivity derivatives: M ?i—;

and %9‘— Using the method described earlier, we form analytic expressions for the coefficients using
Cramer’s rule which makes use of the CTC and C"z matrices which are described in Eqgs. 49-51. The
expressions for the coefficients will be similar in form to Egs. 37. One computes derivatives of these
quantities in a manner analogous to that described in Egs. 40-43. The only change is in the
implementation details of steps 3 and 7 of the procedure previously outlined; namely, the replacement of
the contents of a column in a matrix with its derivative. This is a minor change; however, if one further
implements the ability to pick and choose any terms in the desired functional form of the surface fit, then
one must keep track of the omitted terms when incorporating this portion of the algorithm. In all other
respects the calculation of the sensitivity derivatives is straightforward and identical to that discussed

previously.

Now, given the values X and ¥, we can compute a value Z from Eq. 56 and an associated B, and P,
from Egs. 57 and 58. From the latter two quantities we can determine a total uncertainty U, from
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Eqs. 14 or 15. This process should be repeated for X, and ¥, which vary throughout the domain
Xin SX; <%, and y <Y, <y, and a series of Z(X,Y); and (Uz)i will result. Then, the
uncertainty in fitted Z(X,Y); values can be plotted along with the fitted surface as follows. Plot the

original (xi , y,,z,.) data values along with the fitted surface Z(X,Y), obtained from the new (X . Y)

jcti

data pairs. Then plot above and below this fitted surface the two additional surfaces: Z(X,Y); +(U 2 )j

and Z(X,Y), —(U 2)1' The latter two surfaces then give an indication of the total uncertainty in fitted

Z(X,Y); values across the entire domain x,;, <X, <x,,, and y;, <V, <y, Since a global plot of

this sort may prove difficult to extract quantitative information from, one may wish to alternatively plot
two-dimensional slices of the data to provide local uncertainty behavior.

Examples

This section gives a few simple examples of the uncertainty that one may expect in coefficients and
fitted values using the procedures described in the previous sections. The results provide some insight
and quantification of the penalties that can arise as a result of improper use of regression techniques.
The approach taken is to use a basic set of experimental data with prescribed uncertainty and to perform
a fit to the data and compute the uncertainty propagated through the fit equations. Then, the data set is
altered in a variety of ways to determine the resulting changes in the uncertainty results. The data to be
fitted are given in Table 1 and include only precision uncertainty in the ordinate. The data are taken
from pp. 183-184 of the text by Coleman and Steele? and are used with permission.

Table 1. Test data for examples.

s oL (B), | (B | () | (B)

2.0 0.0 0.0 24 0.0 1.0
3.0 0.0 0.0 3.0 0.0 1.0
4.5 0.0 0.0 3.5 0.0 1.0
5.3 0.0 0.0 4.5 0.0 1.0
6.5 0.0 0.0 4.9 0.0 1.0
7.8 0.0 0.0 5.6 0.0 1.0
8.5 0.0 0.0 6.8 0.0 1.0
10.1 0.0 0.0 7.3 0.0 1.0

The first case consists of a linear fit to the data in Table 1. Following the summary provided in a
previous section, the fit coefficients and the total uncertainties (using Eq. 14) in the fit coefficients were
computed. The latter quantities were divided by the respective values of the fit coefficients to produce
percentage uncertainties, and these data may be found in Table 2. For the given number of data points
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and for the specified level of uncertainty in the ordinates, the uncertainty in the intercept is 86% and in
the slope, 22%.

Table 2. Uncertainty in fit coefficients.

Type c C, c; Uc,/c, (%) |Uc,/c, (%) {Ucs/c; (Y0)
Case 1 Linear 1.0278 0.6243 n/a 85.93 21.74 n/a
Case 2 | Quadratic| 1.3634 0.4857 0.0116 137.68 143.51 | 493.46 -
Case 3 |Dble Data| 0.9855 0.6309 n/a 69.01 16.74 n/a
Case4 | HalfUnc | 1.0278 0.6243 n/a 42.97 10.87 n/a -
Case5 | AddErr | 1.0278 0.6243 n/a 88.20 22.13 n/a

The next step is to produce a series a fitted values, Y(X);, using a series of X, lying between the

minimum and maximum values of the data in the first column of Table 1. Twenty such values were
chosen, and since the original data values contained no uncertainty in the abscissa, the uncertainty
associated with new abscissas was estimated to be zero. Then, for each of these fitted values, the total

uncertainty, (U, ) , was calculated and the quantities ¥(X), +{U, ). and Y(X ) . —{U, ) were formed.
P Y J J Yj

Table 3. Uncertainty in fitted values.

Xx Yo UYx YUYy | YaUYy
2.00 2.8 0.64 2.92 1.63
2.43 2.54 0.60 3.14 1.95
2.85 2.81 0.55 3.36 2.26
3.8 3.07 051 3.58 2.57
371 334 0.47 3.81 2.87
413 3.61 0.43 4.04 3.17
456 3.87 0.40 427 3.47
498 414 0.38 452 3.76
5.41 4.41 0.36 477 4.04
5.84 467 0.35 5.03 432
6.26 4.94 0.36 5.29 458
6.69 5.20 037 557 484
7.12 5.47 0.39 5.86 5.08
7.54 5.74 0.41 6.15 5.32
7.97 6.00 0.45 6.45 5.56 .
8.39 627 0.48 6.75 5.78
8.82 6.53 0.52 7.06 6.01
9.25 6.80 0.57 737 6.23 .
9.67 7.07 0.62 7.68 6.45
10.10 733 0.66 8.00 6.67
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This data may be found in Table 3. One can see that the uncertainty propagated into fitted values varies
with the abscissa from a maximum of 0.66 near each end of the range to a minimum of 0.35
approximately midway through the range. Figure 1 shows a plot of this behavior. Also, contained in
Fig. 1 is the original data with error bars representing the precision uncertainty in the ordinates along
with the linear fit satisfying the least squares criterion.

In addition, quantities which describe the goodness of the fit: the standard error (also known as the
standard error of the estimate, SEE) and the correlation coefficient, were computed from Eqs. 8 and 9,
respectively. The results may be found in Table 4. The total uncertainty in the abscissa for fitted values,
estimated to be zero, is listed in the table as well as an average uncertainty for the ordinate. Finally, for
comparison, the last column of Table 4 contains the standard error multiplied by two; this number has
often been used in the past as the uncertainty bands around fitted values from the fit.

Table 4. Goodness of fit parameters.

Type R Std Err UXy |(AvgUYy| 2SEE
Case 1 Linear | 0.9863 | 0.2905 0 0.4759 | 0.5810
Case2 |[Quadratic| 0.9848 | 0.3051 0 0.5653 | 0.6101
Case 3 |Dble Data; 0.9903 | 0.2234 0 0.3574 | 0.4468
Case4 |Half Unc| 0.9863 | 0.2905 0 0.2380 | 0.5810
Case 5 | AddErr | 09863 | 0.2905 | 0.3162 | 0.5303 | 0.5810

A glance at Fig. 1 shows that the fit appears to be reasonably good, and the fit parameters bear this out
with a high correlation coefficient and a relatively small standard error of the original data points about
the fitted line. What these statistics do not indicate are the high uncertainties in the fit coefficients,
which are presumed to result from: the amount of data used to construct the fit and the high uncertainties
associated with the ordinates of the original data. Fitted values obtained from this fit will have a total
uncertainty associated with them which varies from 0.66 to 0.35 or an average value of 0.48. This latter
value is greater than the standard error, but less than the uncertainties in the ordinates of the original data
values and not as conservative as the less accurate 2 SEE measure applied in the past.

Although the data appear to be reasonably approximated by a linear fit, one might wish to improve the
fit by using a higher order polynomial. One might argue that the coefficient multiplying the quadratic
term, if not needed, will simply turn out to be a small number, and the higher order fit will do no harm.
For case 2, a quadratic fit was computed for the data in Table 1 using the same procedure as described
above. The coefficients and percent uncertainty for the coefficients are given in Table 2, the fit
parameters are in Table 4, and a plot of the results may be found in Fig. 2. We see that for this particular
data set, the standard error and the correlation coefficient are nearly the same for the quadratic and linear
cases. However, the uncertainties associated with the coefficients, particularly the quadratic term, are
very high. The uncertainty in fitted values varies from a maximum of 0.88 to a minimum of 0.47 which
yields an average value of 0.57, and this is higher than that for a linear fit with no improvement in fit
characteristics.
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In an attempt to reduce uncertainty, the input data set listed in Table 1 was approximately doubled in
size, and a linear fit was computed for this extended data set for case 3. The extended data set was
obtained by adding an additional pair of data values between each of the existing data values by means
of linear interpolation in each coordinate, thereby increasing the data set from 8 to 15 data pairs. Each
new data pair was assigned zero bias and precision uncertainties for the abscissas and a zero bias and a
precision uncertainty equal to one for each ordinate. One might argue that the manner in which the new
data were generated may bias the results, nevertheless, the improvement was surprisingly meager. The
coefficients and percent uncertainty for the coefficients are given in Table 2, and the fit parameters are in
Table 4. The computed coefficients varied slightly due to the change in the input data, but were close
enough to case 1 to afford a reasonable comparison. There was some improvement in the uncertainty in
the fit coefficients: a reduction from 86% to 69% for the intercept and a reduction from 22% to 17% for
the slope. Similarly, the uncertainty in fitted values varied from a maximum of 0.51 to a minimum of
0.26 for an average value of 0.36. The correlation coefficient improved from 0.986 to 0.99 and the
standard error decreased from 0.29 to 0.22.

The fourth example was designed to test the effect of halving the uncertainty in the input data. Thus, the
eight data pairs listed in Table 1 were used with the exception that the precision uncertainties for the
ordinates were reduced to 0.5. The results of the linear fit are listed in the appropriate tables, and we
find a marked decrease for this case when compared to case 1. The uncertainty in the intercept was
reduced from 86% to 43% and for the slope from 22% to 11%. The uncertainty in fitted values varied
from a maximum of 0.33 to a minimum of 0.18 for an average value of 0.24. The correlation coefficient
and standard error were identical to that of the first case because these parameters are formed from the
input coordinate pairs which did not change. Notice the considerable difference between the average
uncertainty in the ordinate, 0.24, and the 2 SEE parameter which remained the same as for case 1 at
0.58; the 2 SEE parameter is an excessively conservative bound for this case. For a given fit order, a
reduction in uncertainty in the data to be fitted is far more effective in reducing uncertainty associated
with fit coefficients and with fitted values than simply increasing the amount of data to be fitted.

Table 5. Test data for case 5.

s | (8) | @), | » | (8)](5)

2.0 0.1 0.3 24 0.1 1.0
3.0 0.1 0.3 3.0 0.1 1.0
4.5 0.1 0.3 35 0.1 1.0
53 0.1 0.3 4.5 0.1 1.0
6.5 0.1 0.3 4.9 0.1 1.0
7.8 0.1 0.3 5.6 0.1 1.0
8.5 0.1 0.3 6.8 0.1 1.0
10.1 0.1 0.3 7.3 0.1 1.0

Finally, for the fifth case, reasonable bias and precision errors were chosen for both the abscissas and the
ordinates for the data listed in Table 1 in order to better simulate the case of experimentally derived data.
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Although, in general, these errors may vary from data pair to data pair in the set, for simplicity, the same
estimates were used for each data pair. The data set used for this example may be found in Table 5.

In order to calculate the bias error propagated into the coefficients (Bc)k from Eq. 12, one must consider
which biases, if any, are correlated. Since the same numerical values were prescribed for each of the

abscissas and ordinates, a reasonable assumption is that the (Bx),- are correlated with each other and the

(By)_ are correlated with each other, but that the (Bx),- are not correlated with the (By)l. For calculating
the bias error propagated into fitted values B, from Eq. 31, one must estimate the expected bias in the

abscissa B, for a fitted data pair and decide if this bias is correlated with any other biases. B, was

assigned values of 0.1 for each new data pair and was assumed to be correlated with the (Bx)f but not

with the (By)‘. The results are listed in the appropriate tables. The computed fit coefficients are

identical to case 1 since the (x,. , y,.) data pairs are unchanged, and the uncertainty propagated into the fit
coefficients is about the same. The correlation coefficient and standard error are unchanged from case 1,
and the total uncertainty in the abscissa for fitted values is 0.32 which is computed using Eq. 14. The
uncertainty in fitted ordinates varied from a maximum of 0.71 to a minimum of 0.42 for an average
value of 0.53 which is about 10% higher than for case 1. The 2 SEE bound remained unchanged. The
fact that this case differs little from case 1 indicates that the uncertainty calculations are dominated by
the precision uncertainty in the ordinates of the input data and that the largest improvement will result
from a decrease in this uncertainty as shown by case 4.
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Fig. 2. Quadratic fit to basic data set.
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Conclusions

This paper has reviewed the manner in which curve fits and surface fits of arbitrary order which satisfy
the least squares criterion are constructed. The method for the computation of uncertainty propagated
into fit coefficients and into fitted values obtained from the fit for both curve and surface fits has been
outlined. The primary obstacle to the efficient implementation of these calculations: the determination
of the sensitivity derivatives, has been removed with the explanation of an analytic method for the
calculation of these derivatives for arbitrary order curve and surface fits. A detailed prescription
describing one possible approach for the implementation of the method was provided. To illustrate the
power of the techniques, simple examples were chosen and contrasted using a generic data set which is
typical of experimentally derived data. The results showed the general behavior of the calculations
under a variety of conditions. In particular, the danger of fitting a higher order polynomial to a data set
when such a model is not warranted, was illustrated. For this particular data set, a reduction in the
uncertainty associated with the input data was more effective at producing reductions in uncertainty
associated with fit coefficients and fitted values than simply using more data with the original
uncertainty levels. Although the equations are somewhat tedious, these methods may be readily
implemented within a computer program making the computation of uncertainty for fits employing the
method of Least Squares a routine matter.
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Appendix

Testing the Surface Fit Implementation

To test a surface fitting computer code, one commonly generates a set of data triplets, (x,. Yis zi) , which
satisfy a known function z= f(x,y) formed from the product of two polynomials. Then, the data are
input into the program, the user selects m, and m, to match the characteristics of the known function,
and the output will be a set of coefficients which should match those of the function which generated the

data. Specifically, a set of (x,. , y,.) are produced in some convenient manner and then input to the
function z = f(x,y) to obtain z, and complete the data triplets (xi , y,.,z,.). This seemingly innocuous

procedure can lead to frustration because the generation of test data, (x,. , y,.) , for input into z = f(x,y)
cannot be chosen arbitrarily if one desires a unique solution! To see how problems can arise, consider
the normal equations, Eqs. 49, for the case m, =m, = 1which become:

>0y Yxlyt Tty Tay|la] [ 2ty

inly? inzyio inlyil inzyil G Zx,lyfzi ‘ (A1)
inoyil zxilyil zx;oyiz inlyi2 Cs B Zx?yilzi ‘

Doyl Dxtyl 2xly? 2xivilled [ 2xiz

Now if , for convenience, one were to choose x; =y, yielding data triplets of the form (x,. WX z,.), then
when developing the coefficient matrix above, row 2 and row 3 would become identical:

Dxl Yxr Dxr Dox! -row2
Se T T T crowd
This causes the matrix to become singular with zero determinant. In other words, we have three

independent equations in the four unknowns yielding a one-parameter family of solutions instead of a
single unique solution. More generally, if one chooses y, =ax;+b, one can show that

(A2)

row 3 = a(row 2) + b(row 1) which will again lead to a non-unique solution to the system of equations.
The point is that the method will fail to produce a unique solution when the x; and y, are chosen such
that they are linearly dependent. The data to be fitted must satisfy the requirement that z= f(x,y) bea
function of two linearly independent variables. This situation is unlikely to occur when fitting

“experimentally derived data and is usually only encountered when generating artificial data for code
validation.
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Table Al. Test data generation scheme.

r s i X Y
1 1 1 l 1
1 2 2 1 2
1 3 3 1 3
2 1 4 2 1
2 2 5 2 2
2 3 6 2 3
3 1 7 3 1
3 2 8 3 2
3 3 9 3 3

One simple scheme for creating test data is to choose an integer, /, such that the desired number of data
triplets will be n = {*; then using two loops, with indices » and s, one constructs the x; and y, using:

x,;=rx, and y,=sy, where i=(r-1)I+s

1<r<l, 1<s<1, 1<i<nm; x, and y, are arbitrary scale factors - (A3)

For example, if one chooses n=9 and x, = y, =10, this scheme produces the data shown in Table 1.
One then chooses an appropriate z = f(x,y) of the form

mx my
2= ¢, x"y?, where k=g (m, +1)+ p+1 and 1<k <(m, +1)(m, +1) , (A4)

p=0g=0
and specifies m, and m,. Finally, the coefficients for this function must be chosen. To avoid large
numbers in the coefficient matrix for increasingly large choices of m, and m,, one can define the

coefficients to be

(_ 1)k+1

= , AS
o= (A3)
Summarizing, one generates # pairs of x, and y, using Eq. A3, then inserts these values in Eq. A4 to
obtain the z, to complete each data triplet. When this test data is input into the surface fitting code, it
should return the fit coefficients defined in Eq. A5 with appropriate choices for m, and m, .
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